Solvability condition for the moving contact line.
نویسندگان
چکیده
We consider the motion of a contact line between a fluid, gas, and solid, as it occurs when a drop advances over a solid surface. This motion is controlled by a microscopic length scale near the contact line, such as a slip length or the precursor thickness. The capillary profile inside the drop is linked to the contact line through an intermediate region which is characterized by an interface slope which varies logarithmically. The intermediate solution contains a single adjustable constant, which can be computed either by matching to the capillary region or to the contact line. We describe a simple method to perform the matching and to compute the required constant. This extends and/or simplifies results known previously. We apply our results to the case of a spreading drop in the presence of an interface potential and derive the equation of motion by combining the inner and outer expansions.
منابع مشابه
Dynamic Response of an Axially Moving Viscoelastic Timoshenko Beam
In this paper, the dynamic response of an axially moving viscoelastic beam with simple supports is calculated analytically based on Timoshenko theory. The beam material property is separated to shear and bulk effects. It is assumed that the beam is incompressible in bulk and viscoelastic in shear, which obeys the standard linear model with the material time derivative. The axial speed is charac...
متن کاملVibration Suppression of Simply Supported Beam under a Moving Mass using On-Line Neural Network Controller
In this paper, model reference neural network structure is used as a controller for vibration suppression of the Euler–Bernoulli beam under the excitation of moving mass travelling along a vibrating path. The non-dimensional equation of motion the beam acted upon by a moving mass is achieved. A Dirac-delta function is used to describe the position of the moving mass along the beam and its iner...
متن کاملMolecular Hydrodynamics of the Moving Contact Line in Two-Phase Immiscible Flows
The no-slip boundary condition, i.e., zero fluid velocity relative to the solid at the fluid-solid interface, has been very successful in describing many macroscopic flows. A problem of principle arises when the no-slip boundary condition is used to model the hydrodynamics of immiscible-fluid displacement in the vicinity of the moving contact line, where the interface separating two immiscible ...
متن کاملA variational approach to moving contact line hydrodynamics
In immiscible two-phase flows, the contact line denotes the intersection of the fluid– fluid interface with the solid wall. When one fluid displaces the other, the contact line moves along the wall. A classical problem in continuum hydrodynamics is the incompatibility between the moving contact line and the no-slip boundary condition, as the latter leads to a non-integrable singularity. The rec...
متن کاملA note on unique solvability of the absolute value equation
It is proved that applying sufficient regularity conditions to the interval matrix $[A-|B|,A + |B|]$, we can create a new unique solvability condition for the absolute value equation $Ax + B|x|=b$, since regularity of interval matrices implies unique solvability of their corresponding absolute value equation. This condition is formulated in terms of positive deniteness of a certain point matrix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 78 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2008